Vedic Mathematics Formulae.
1) “By one more than previous (number)”
• To express decimal equivalent of vulgar fraction when denominator is
ending in 9
e.g. 6/19 = 0.315789473684210526…
• To find the square of numbers ending in 5.
e.g. (85)2 = 7225.
2) “(Subtract) All from 9, last from 10”
• To multiply 2 numbers when one of them is nearer to 10 or powers of 10.
e.g. 4368-5632
X 9999-0001
43675632
3) “Vertically and crosswise.”
• To multiply 2 numbers.
e.g. 123
X 321
39483
• To divide one number by another number: e.g.38982/73
___ 534|0___
73|383938|12 Ans: 534 and remainder 0
4) “Transpose and use”
• To divide one number by another which is nearer to 10 or powers of 10.
e.g. Divide 1234 by 112
1 1 2 | 1 2: 3 4
-1-2| -1:-2
| :-1-2
1 1: 0 2 Ans: 11 and remainder 02
5) “When there is similarity the entity is zero”
• (X+7)(X+9) = (X+3)(X+21)
Here 7x9 = 3x21 Therefore X = 0
6) “When one is in ratio the other is zero”
• To solve 2 simultaneous equations.
e.g. 6X + 7Y = 8
19X + 14Y = 16 Here 7:14 :: 8:16 Therefore X = 0 and Y = 8/7
B.A.Naik. 022-23869260 bhalchandra.naik@rediffmail.com Mo: 9820682328
7) “By addition and subtraction”
• To solve 2 simultaneous equations.
e.g. 45X – 23Y = 113
23X – 45Y = 91
By addition we get: 68X – 68Y = 204 i.e. X - Y = 3
By subtraction we get: 22X + 22Y = 22 i.e. X + Y = 1
Again by addition and subtraction we get: X = 2 & Y = - 1
8) “By completion and non-completion”
• To solve quadratic, cuboid type equations.
e.g. X3 - 6 X2 + 11X – 6 = 0
Complete the cube: X3 - 6 X2 + 12X – 8 – X + 2 = 0
(X – 2)3 = (X – 2) Therefore X – 2 = 0, -1 or 1 i.e. X = 2, 1 or 3.
9) “By differential calculus”
• To find roots of quadratic equation.
e.g. X2 – 7X + 12 = 0
Taking first differential equal to √ (b2 – 4ac) we get:
2X – 7 = +√ ((-7)2 – 4x1x12) i.e. X = 3 or 4.
10) “Whatever is less”
• To find the cube of numbers which are nearer to 10 or powers of 10.
e.g. (104)3 = 112 48 64. (Subtract -4 twice from 104 to get 112 Then multiply -4 and -12 to get 48 and then write the cube of 4 i.e. 64.
11) “Individual and whole”
• To solve algebraic equation.
e.g. (X+7)4+(X+5)4=706 Expressing it as sum of two forth powers we get:
(X+7)4+(X+5)4 =54+34 Therefore X+7=+5 and X+5=+3
12) “(Multiply) the remainders by last digit”
• 3, 2, 6, 4, 5, and 1 are the remainders when multiplied by 7 the last digits of the quotients will be: 1, 4, 2, 8, 5 and 7 respectively.
Therefore 1/7 = 0.142857
13“Last and twice the penultimate”
• To multiply by 12. e.g. 412 x 12 = 4944
• To solve the algebraic equations of the following form:
1/AB + 1/AC = 1/AD + 1/BC where A,B,C&D are in A.P. Then D+2C = 0.
e.g. 1/((X+2)(X+3)) + 1/((X+2)(X+4)) = 1/((X+2)(X+5)) + 1/((X+3)(X+4))
Here (X+5)+2(X+4) = 0 Therefore X = -13
B.A.Naik. 022-23869260 bhalchandra.naik@rediffmail.com Mo: 9820682328
14) “By one less than previous”
• To multiply by series of 9 say 99, 999 etc. when the number of digits in the multiplicand is less than or equal the number of digits in multiplier. e.g. 8x9=72. 11x99=1089. 231x999=230769
15) ”Sum of co-efficients”
• X3+6 X2 +11X+6 = (X+1)(X+2)(X+3)
1+6+11+6 = (1+1)(1+2)(1+3)
24 = 2x3x4
16) “First differential is equal to sum of the factors”
• Consider: X2 + 3X + 2 = (X+1)(X+2)
Here first differential is 2X + 3 = sum of factors: X+1 and X+2.
_____________________________________________________________________
मंगळवार, २० ऑक्टोबर, २००९
मंगळवार, २७ जानेवारी, २००९
वैदिक गणिताचे जनक: भारती कृष्ण तीर्थजी महाराज
विसाव्या शतकांत वैदिक गणितातील सूत्रे जगद्गुरु शंकराचार्य श्री.भारती कृष्ण तीर्थजी महाराज यांनी शोधली.
त्यांचे मूळ नांव वेंकटरमण.जन्म:१९ मार्च १८८४,मद्रास येथे.वयाच्या सोळाव्या वर्षी त्यांच्या संस्कृतच्या ज्ञानामुळे सरस्वती ही पदवी त्यांना मिळाली.
१९०३ साली अमेरिकन कॉलेज ऑफ सायन्सच्या मास्टर ऑफ आर्टस या परीक्षेला मुंबई केंद्रातून ते ७ विषय घेवून बसले;आणि सर्व विषयात सर्वोच्च गुण मिळवून उत्तीर्ण झाले. इंग्लीश,संस्कृत,विज्ञान-रसायन,इतिहास,भूगोल,गणित आणि तत्वज्ञान हे ते सात विषय होत.
त्यांचे मूळ नांव वेंकटरमण.जन्म:१९ मार्च १८८४,मद्रास येथे.वयाच्या सोळाव्या वर्षी त्यांच्या संस्कृतच्या ज्ञानामुळे सरस्वती ही पदवी त्यांना मिळाली.
१९०३ साली अमेरिकन कॉलेज ऑफ सायन्सच्या मास्टर ऑफ आर्टस या परीक्षेला मुंबई केंद्रातून ते ७ विषय घेवून बसले;आणि सर्व विषयात सर्वोच्च गुण मिळवून उत्तीर्ण झाले. इंग्लीश,संस्कृत,विज्ञान-रसायन,इतिहास,भूगोल,गणित आणि तत्वज्ञान हे ते सात विषय होत.
याची सदस्यत्व घ्या:
टिप्पण्या (Atom)